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A common impervious asphalt: existing 

condition (circa January 2009) 

https://portal.ees.ufl.edu/sites/classes/env4532/t12009/Photos/IMG_4866.JPG


Problem Statement 

Urban design elements (for example: roadways, 

parking) and materials (for example: pavement 

materials) associated with the motor vehicle; and of 

vehicular transportation have helped contribute to 

urban drainage pollutant loads at levels similar to 

untreated wastewater. 

 

Can we design our way back to urban drainage 

sustainability or is sustainability purely hydro-fantasy? 



Cementitious permeable pavement (CPP), as an in-situ 
material with behavior that can be measured/modeled 

Unsaturated 
flow in 
AOCM media 
or subgrade 
 

Lateral Sheet Flow, qsf 

Solids & particulates 

CPP adsorptive-filter design: 

• 11 - 15 kN/m3  Unit weight 
• 0.1- 0.005 cm/s  Ksaturated (clean bed) 

• 25,000 – 30,000 Kpa Unconfined strength 

• 20 - 50 L/min-m2  Surface loading rate 
 

Mix Design Proportions: 

• varies   Type II Cement 

• 380 kg   Sand 

• 380 kg   Pea Gravel 

• varies    Water 

• 10 – 30 %   Total porosity 

• varies    Amphoteric admixture 
Ksat. for media: 0.01 cm/s 

Evaporation 
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CPP Pore and Structural Properties (function of mix design)   

fc
’: unconfined compressive strength 

fs:  splitting tensile strength 
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Filtration mechanisms of CPP 
(a pre- or primary unit operation that can be maintained) 

(10 < dm/dp < 20)
Deep-bed Filtration 

Coarse size particles:  > 100-m
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Schmutzdecke
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(dm/dp > 20)
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The power law function uses 

cumulative particle number 

density (PND) of all particles 

larger than the reference value R 

(i.e. 1 m). 
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Runoff flowrate per each filter cartridge (l/s)
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First third fine PM load Second third fine PM load Final third fine PM load

Measured H during the 1st phase

 Measured H during the 3rd phase

Modeled H using Ergun equation

Measured H during the 2nd phase

 = 0.35  = 0.35

  = 0.33

R
2
 = 0.97

n   = 703

  = 0.34
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 = 0.95

n   = 289

  = 0.35

R
2
 = 0.96

n   = 527



Total Impervious Area (TIA): Florida 
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Example: 

Orange County 
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Site Vicinity Map: UF Campus in Gainesville 

0         1000      2000 feet 

Map Created Feb 28, 2009 – University of Florida EES 

Lake Alice 



Existing Site Conditions (Post-Development)  
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Watershed 

Area 
3.23 acres 

Total % 

Pavement 
75.61% 

Total % 

Island 
24.39% 

The current design has 

raised vegetated islands that 

drain to impervious asphalt 

pavement. 



Subject Site Pre-Development Hydrologic Cycle 

402.7 in 
325.66 in. 

28.99 in. 

53.80 in. 

319.91 in. 

20.44 in. 

2.80 in. 

203.55 in. 

93.12 in. 

Rainfall Data: 
• Historical rainfall only 

• August 1999 – January 2009 

• Pristine Conditions 
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402.7 in. 
120.96 in. 

80.94 in. 

251.66 in.  (53.80 in.) 

70.10 in. 

41.18 in. 

30.08 in. 
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Rainfall Data: 
• Historical rainfall only 

• August 1999 – July 2008 

• Existing Conditions (01/2009) 

 

Subject Site Post-Development Hydrologic Cycle 



Mean Site Discharge Concentration and Hydrology Data 

Development Condition 
TSSa 

[mg/L] 

TP 

[mg/L] 

TN 

[mg/L] 

Pre-Development (FDEP “Pristine”) ≈ 7.8b ≈ 0.074 ≈ 1.15 

Post-Development (Existing Condition) 346a 1.27 4.72 

Percent Increase 4400% 1700% 410% 

 Pre-Development Conditions 

– Based on FDEP pre-developed EMC values and SWMM simulations   

– Table 4.16 of FDEP Stormwater Treatment Report (FAC 62-25 § 4.1.14) 

– Undeveloped rangeland/forest 

 Post-Development Conditions 

–  9 years of historical rainfall data (Gainesville Regional Airport, NCDC)c and ET data 

–  Runoff loads for 15 storms at site under existing conditions  

14 

a. TSS = ∑ Suspended + Settleable + Sediment 

b. Harper, H. and Baker, D. (2003) and as required by FDEP in recent load matching (FDOT, 2007)  

c. http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwDI~StnSrch~StnID~20004544 
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Within the existing site constraints site, 

can we envision green infrastructure 

and LID design options? 



Green Infrastructure, LID, Source Control Design 
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Conventional Stormwater Treatment (Existing) 

• Standard curb and gutter design 

Design: Street Sweeping 

• Particulate Matter (PM), TN and TP Removal 

• Monthly maintenance as source control, restores conductivity  

Design: Cementitious Permeable Pavement (CPP) 

• This Linear Infiltration Reactor (LIR) allows PM & TP Filtration  

• Dissolved Phosphorus Adsorption through Al-oxide Admixture 

Design:  Biofiltration Area Reactor (BAR) 

• Storage, Sedimentation, Phyto-pumping with vegetative design 

• Evapotranspiration, Infiltration, Biogenic source of organic C 

Design: Clay Bounding Layer of Sub-surface Biofilter 

• Nitrate utilized as electron acceptor in sub-surface biofilter: to 
allow denitrification through water table management 



Design Options 
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Existing Condition BAR only 

Varying width LIR (with CPP) and BAR All CPP and BAR 



Design Option 1 (Post-Development Existing Condition) 
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Design Option 2 (Biofiltration Area Reactor, BAR only) 
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Design Option 3(a) (BAR + Permeable Pavement LIR) 
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Design Option 3(b) (BAR + All Permeable Pavement) 
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Design Criteria and Considerations 

 Meet pre-development 

condition pollutant loading 

 Provide consistent treatment 

throughout lifespan using 

maintenance practices 

 Reduce strain on stormwater 

infrastructure 

 Restore hydrologic cycle 

 Green infrastructure design 

 Maintain existing land use 

function 
22 
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Impaired Waters (USEPA) 



Surveying AutoCAD GIS SWMM VS2DTI 

Modeling Process Flow 
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Watershed Area 3.23 acres 

Surface Area of 

Islands 
0.79 acres 

Surface Area of 

Pavement 
2.45 acres 

Volume of 

Pavement 
1970 yd3 

Total % Island 24.39% 

Total % Pavement 75.61% 



Surveying AutoCAD GIS SWMM VS2DTI 

Modeling Process Flow 
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Surveying AutoCAD GIS SWMM VS2DTI 
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Modeling Process Flow 



Surveying AutoCAD GIS SWMM VS2DTI 

Modeling Process Flow 
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0.1 

0.2 

0.3 

0.4 

0.5 

Runoff, CFS 



Surveying AutoCAD GIS SWMM VS2DTI 

Modeling Variably Saturated Groundwater Flow 

28 



Storm Water Management Model (SWMM) 

 Open Source 

 Quality and Quantity 

– BMP evaluation 

– Flood control 

 Continuous simulation 

 Eliminates need for peak flow 

analysis or design storm event 

 Porous surface runoff 

 Infiltration 
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VS2DTI 

 Developed by USGS to solve problems of water flow and predict 2-D 

subsurface solute transport in variably saturated porous media 

 Transport processes: advection, dispersion, first-order decay, 

equilibrium adsorption as described by Freundlich or Langmuir 

isotherms, and ion exchange 

– Representation of unsaturated hydrologic characteristics and breakthrough 

 

                 Richard’s Equation: 
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K = hydraulic conductivity [L/T]; ψ = pressure head [L]; z = elevation above 

datum [L]; θ = water content [L3/L3]; t = time [T] 
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https://portal.ees.ufl.edu/sites/classes/env4532/t12009/Photos/fwea 003.jpg
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 Measureda Gainesville Evapotranspiration (ET) 
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Year
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a. Data from Florida Automated Weather Network (FAWN) 



ET/Eo Ratios for Selected Plants 
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a. Boyd, 1987 

b. Ramey, 2004 (http://aquat1.ifas.ufl.edu/guide/evaptran/climatology) 

Plant Species E/Eo
a,b 

Panicum rigidulum 1.58 

Juncus effusus 1.52 

Alternathera philoxeroides 1.26 

Typha latifolia 2.0 (average) 

Pontederia cordata 1.2 

Scirpus validus 1.9 

Grass 0.75 



Pollutant Load Characterization for  

Existing Site Conditions 

 Pollutant Loading 

– 15 rain events 

– P, N, TSS 

 Manually sampled 

 In-house analyses 

 Chain of Custody 
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https://portal.ees.ufl.edu/sites/classes/env4532/t12009/Photos/100_2061.JPG
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Phosphorus Nitrogen Particulate Matter

Nutrient (P, N) and Particulate Matter (PM) 
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Redox as a function of runoff detention in Subsurface Filtration 
(BMPs contain high microbial activity for electron transfers)  
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 Sandy soil with silt (USCS) 

 Ks: 10.6 – 13.5 cm/h (11.7 cm/h) 

 Ψ: -5cm pressurea 

 nt: 0.36 

 Initial deficit: 0.2 cm 
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https://portal.ees.ufl.edu/sites/classes/env4532/t12009/Photos/IMG_2832.jpg


Design Options 

41 

Existing Condition BAR only 

Varying width LIR (with CPP) and BAR All CPP and BAR 



Design Option 1: Existing Conditions 

 

42 Design Option 1 



Design Option 1: Water Quantity & Quality 
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Design 

Option 

Runoff 

(in) 

Phosphorus 

(lb) 

Nitrogen 

(lb) 

TSS 

 (lb) 

Pristine 53.8 7.78 301.61 296.26 

Current 1 251.66 243.05 1065.83 61143.81 

BAR 2 

2 ft LIR + BAR 3(a) 

4 ft LIR + BAR 3(a) 

6 ft LIR + BAR 3(a) 

All CPP + BAR 3(b) 



Design Option 2: BAR Only 

Design Option 2 44 

BAR 



Design Option 2: Water Quantity & Quality 
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Design 

Option 

Runoff 

(in) 

Phosphorus 

(lb) 

Nitrogen 

(lb) 

TSS 

 (lb) 

Pristine 53.8 7.78 301.61 296.26 

Current 1 251.66 243.05 1065.83 61143.81 

BAR 2 117.21 13.48 575.83 1907.14 

2 ft LIR + BAR 3(a) 

4 ft LIR + BAR 3(a) 

6 ft LIR + BAR 3(a) 

All CPP + BAR 3(b) 



Design Option 3(a): 

Linear Infiltration Reactor Design 

46 Design Option 3(a) 

BAR 



Design Option 3(b): Water Quantity & Quality 
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Design 

Option 

Runoff 

(in) 

Phosphorus 

(lb) 

Nitrogen 

(lb) 

TSS 

 (lb) 

Pristine 53.8 7.78 301.61 296.26 

Current 1 251.66 243.05 1065.83 61143.81 

BAR 2 117.21 13.48 575.83 1907.14 

2 ft LIR + BAR 3(a) 74.19 5.56 270.57 731.76 

4 ft LIR + BAR 3(a) 62.79 3.95 210.23 489.11 

6 ft LIR + BAR 3(a) 53.63 2.17 133.18 239.85 

All CPP + BAR 3(b) 1.16 0.001 13.95 0.18 



Cementitious permeable pavement (CPP), as an LID 
material with behavior that can be measured/modeled 

Infiltration  
to Al-Oxide  
admixture or 

subgrade soils 
 

Lateral Sheet Flow, qsf 

Particulate Matter (PM) 

CPP adsorptive-filter design: 

• 11 – 15 kN/m3   Unit weight 
• 0.1 – 0.005 cm/s  Ksaturated (clean sand) 

• 25,000 – 30,000 kPa  Unconfined strength 

• 20 – 50 L/min-m2  Surface loading rate 
 

Mix Design Proportions: 

• Varies    Type II Cement 

• Varies kg   Sand 

• Varies kg   Gravel 

• Varies    Water (w/c < 0.4) 

• 10 – 30 %   Total porosity 

• Varies    Amphoterics (Al-Oxide) 

Evaporation 
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Phosphorus Adsorption over Time – 6 ft. LIR 
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With CPP Without CPP 



Phosphorus Adsorption over Time – 6 ft. LIR 
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With CPP Without CPP 
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Breakthrough and Adsorption Results 

  Runoff (in) Phosphorus (lb) Nitrogen (lb) TSS (lb) 

Pristine 53.8 7.78 301.61 296.26 

Current 251.66 243.05 1065.83 61143.81 

BAR 117.21 13.48 575.83 1907.14 

2 ft LIR + BAR 74.19 5.56 270.57 731.76 

4 ft LIR + BAR 62.79 3.95 210.23 489.11 

6 ft LIR + BAR 53.63 2.17 133.18 239.85 

All CPP + BAR 1.16 0.001 13.95 0.18 
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Economics and Cost Analysis 
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Economics and Cost Analysis of Street Sweepers 
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Sweeper Type 
Purchase Price 

($) 

O&M Cost 

($/curb mile) 

Mechanical 75,000 30 

Vacuum Assisted 150,000 15 

Sweeper Type 
Annual O&M 

Costs ($) 

Total O&M 

Costs 

Purchase Costs 

($) 

Total Costs 

($) 

Mechanical 4,000 59,500 173,600 233,100 

Vacuum Assisted 1,000 15,400 203,200 218,600 
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Economics and Cost Analysis 
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Overall Costs for Option 3(a): 6ft LIR with BAR 

Capital Costs for LIR 

  Cost  

Excavation $9,100 

Al-Oxide $23,000 

Pavement $99,200 

Total $131,000 

Cost Category LIR BAR 

Capital $131,000  $70,000  

 O&M $5,400  $54,000  

Subtotal $137,000 $124,000 

Engineering 

fee  
$13,700  $12,400  

Contingency 

fee  
$20,500  $18,600  

PV of Cost $171,000  $155,000  

Overall Cost  

(LIR and BAR) 
 $325,000  
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Final Design Recommendation 
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Design Option 3(a): 6 ft LIR with BAR (based on 9 yrs of loads)  

 Condition 
Design 

Option 

Runoff  

(inches) 

Phosphorus  

(lb) 

Nitrogen  

(lb) 

TSS 

 (lb) 

Pristine 53.8 7.78 301.61 296.26 

Current 1 251.66 243.05 1065.83 61143.81 

6 ft LIR + BAR 3(a) 53.63 2.17 133.18 239.85 

$325,000  

BAR LIR 
LIR 

Bounding Clay Layer 



Economics and Cost Analysis 
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Cost Comparison of Option 3(a) with a 6 ft LIR to Mean BMPs in Florida 

Nutrient 

Mass in runoff 

from site 

(lb/yr) 

Option 3(a) 

Design Cost 

($/lb/yr) 

Mean cost for 

treatment with 

FL BMP 

($/lb/yr)a 

Difference    

($/lb/yr) 

 Percent 

Difference  

(%) 

Nitrogen 100 3,260 3,730 470 13 

Phosphorus 26 12,530 14,720 2,190 15 

a. (2008) FDEP, “TMDL Costs of Florida BMPs for Nitrogen and Phosphorus” 



Extensibility To New Construction Design 
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Cost of Conventional Construction and BMPs: Cost using LID through Design Option 3(a): 

Component Cost   Cost 

Capital 

Piping $31,300 

Lights $11,300 

Drains $16,400 

Excavation $58,700 

Asphalt $117,200 

Concrete $13,700 

Total Capital Cost   $248,000 

Engineering Fee 

(10%) 
  $24,800 

Contingency Fee 

(15%) 
  $37,200 

Total cost to Build 

Parking Lot 
  $310,000 

Cost of Compliance with Unified Stormwater Rule Using 

Conventional BMPs: 

Mean Cost of BMP 

in Florida 
 (for this watershed) $383,000 

Overall Cost    $693,000 

Cost Category LIR BAR 

Capital $283,000 $54,900 

O&M $420 $3,300 

Engineering fee  $28,300 $9,700 

Contingency fee  $43,300 $14,600 

PV of Cost $361,000 $121,600 

Overall Cost   $482,000 

https://webmail.ufl.edu/attachment.do?part=1&uid=10704&folder=INBOX


Questions 

Thank You: 
 

• Eric Livingston, FDEP 

• Dr. Christian Beretta,  

• Hao Zhang, Giuseppina Garofalo, Natalie Magill, and Eban Bean 

• Chuck Hogan (UF Physical Plant) 

• Ron Osteen and Darrin Vogeli (Financial Information)  
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